Question
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k = 3
.
Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array’s size for non-empty array.
Follow up:
Could you solve it in linear time?
Hint:
- How about using a data structure such as deque (double-ended queue)?
Solution
Result: Accepted Time: 116 ms
Here should be some explanations.
struct Node{
int value,index;
Node():value(0),index(0){}
Node(int v,int i):value(v),index(i){}
bool operator < (const Node & rht) const
{
return this->value < rht.value;
}
};
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
priority_queue<Node> que;
vector<int> ret;
for(int i = 0; i < k - 1;i++)
que.push(Node(nums[i],i));
for(int i = k-1; i < nums.size(); i++)
{
que.push(Node(nums[i],i));
Node tmp = que.top();
while(i - tmp.index >= k)
{
que.pop();
tmp = que.top();
}
ret.push_back(tmp.value);
}
return ret;
}
};
Complexity Analytics
- Time Complexity:
- Space Complexity: