Question
Given two words (beginWord and endWord), and a dictionary’s word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the word list
For example,
Given:
beginWord =
"hit"
endWord ="cog"
wordList =["hot","dot","dog","lot","log"]
As one shortest transformation is"hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length5
.Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
Solution
Result: Accepted Time: 217 ms
Here should be some explanations.
class Solution {
public:
int ladderLength(string bwrd, string ewrd, unordered_set<string>& list) {
queue<int> dep;
queue<string> que;
que.push(bwrd);dep.push(1);
list.erase(bwrd);
while(!que.empty())
{
const string tmp = que.front();que.pop();
const int depth = dep.front();dep.pop();
if(tmp == ewrd)
return depth;
for(int i = 0; i < tmp.length(); i++)
{
string str = tmp;
for(char t = 'a'; t <= 'z'; t++)
{
str[i] = t;
if(list.count(str))
{
que.push(str);
list.erase(str);
dep.push(depth+1);
}
}
}
}
return 0;
}
};
Complexity Analytics
- Time Complexity:
- Space Complexity: