Question
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Solution
Result: Accepted Time: 8 ms
Here should be some explanations.
int tmin(int** tri,int r,int c,int csz)
{
if(c+1 >= csz) return tri[r][c];
if(tri[r][c] > tri[r][c+1])
return tri[r][c+1];
return tri[r][c];
}
int minimumTotal(int** tri, int row, int *cols) {
for(int i = row -2 ; i >= 0 ; i--)
for(int c = 0; c < cols[i]; c++)
tri[i][c] += tri[i+1][c] < tri[i+1][c+1]?tri[i+1][c] : tri[i+1][c+1];
return tri[0][0];
}
Complexity Analytics
- Time Complexity:
- Space Complexity: