07/16/2016

## Question

Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

For example,

Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.

Window position                Max
---------------               -----
[1  3  -1] -3  5  3  6  7       3
1 [3  -1  -3] 5  3  6  7       3
1  3 [-1  -3  5] 3  6  7       5
1  3  -1 [-3  5  3] 6  7       5
1  3  -1  -3 [5  3  6] 7       6
1  3  -1  -3  5 [3  6  7]      7


Therefore, return the max sliding window as [3,3,5,5,6,7].

Note:

You may assume k is always valid, ie: 1 ≤ k ≤ input array’s size for non-empty array.

Could you solve it in linear time?

Hint:

1. How about using a data structure such as deque (double-ended queue)?

## Solution

Result: Accepted Time: 116 ms

Here should be some explanations.


struct Node{
int value,index;
Node():value(0),index(0){}
Node(int v,int i):value(v),index(i){}
bool operator < (const Node & rht) const
{
return this->value < rht.value;
}
};
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
priority_queue<Node> que;
vector<int> ret;
for(int i = 0; i < k - 1;i++)
que.push(Node(nums[i],i));
for(int i = k-1; i < nums.size(); i++)
{
que.push(Node(nums[i],i));
Node tmp = que.top();
while(i - tmp.index >= k)
{
que.pop();
tmp = que.top();
}
ret.push_back(tmp.value);
}
return ret;
}
};


Complexity Analytics

• Time Complexity: $O(nlog(n))$
• Space Complexity: $O(1)$